A-Priori Analysis of the Quasicontinuum Method in One Dimension

نویسندگان

  • Christoph Ortner
  • Endre Süli
چکیده

The quasicontinuum method is a coarse-graining technique for reducing the complexity of atomistic simulations in a static and quasistatic setting. In this paper we give an a-priori error analysis for the quasicontinuum method in one dimension. We consider atomistic models with Lennard–Jones type long range interactions and a practical QC formulation. First, we prove the existence, the local uniqueness and the stability with respect to a discrete W1,∞–norm of elastic and fractured atomistic solutions. We then use a fixed point technique to prove the existence of a quasicontinuum approximation which satisfies an optimal a-priori error bound.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the quasicontinuum method in one dimension

The quasicontinuum method is a coarse-graining technique for reducing the complexity of atomistic simulations in a static and quasistatic setting. In this paper we aim to give a detailed a priori and a posteriori error analysis for a quasicontinuum method in one dimension. We consider atomistic models with Lennard–Jones type long-range interactions and a QC formulation which incorporates severa...

متن کامل

Analysis of a Quasicontinuum Method in One Dimension

Abstract. The quasicontinuum method is a coarse-graining technique for reducing the complexity of atomistic simulations in a static and quasistatic setting. In this paper we aim to give a detailed a priori and a posteriori error analysis for a quasicontinuum method in one dimension. We consider atomistic models with Lennard–Jones type long-range interactions and a QC formulation which incorpora...

متن کامل

A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D

For a next-nearest neighbour pair interaction model in a periodic domain, a priori and a posteriori analyses of the quasinonlocal quasicontinuum method (QNL-QC) are presented. The results are valid for large deformations and essentially guarantee a one-to-one correspondence between atomistic solutions and QNL-QC solutions. The analysis is based on truncation error and residual estimates in nega...

متن کامل

A-Posteriori Analysis and Adaptive Algorithms for the Quasicontinuum Method in One Dimension

The quasicontinuum (QC) method is a coarse-graining technique for reducing the complexity of atomistic simulations in a static and quasistatic setting. In this paper we give an a-posteriori error analysis for the quasicontinuum method in one dimension. We consider atomistic models with Lennard–Jones type finite-range interactions. We prove that, for a stable QC solution with a sufficiently smal...

متن کامل

A Priori Error Estimates for Energy-Based Quasicontinuum Approximations of a Periodic Chain

We derive a priori error estimates for three prototypical energy-based quasicontinuum (QC) methods: the local QC method, the energy-based QC method, and the quasinonlocal QC method. Our analysis clearly decomposes the consistency error into modelling and coarsening errors. While previous results on estimating the modelling error exist, we give a new and simpler proof based on negative-norm esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006